Last Updated on July 8, 2020

Our Recommended Tasks for the Touch Panel System

If you are new to behavioral neuroscience, choosing the right behavioral test for your experiment can be a challenging task. Luckily our touch panel operant conditioning chambers are extremely flexible and allow users to run a variety of operant tests in laboratory animals. Today I’m going to talk about 4 common tasks used with our operant conditioning chambers and what they measure so you can hit the ground running with your experiments.

The first is the Visual Discrimination task:

This task involves learning that one of the two shapes displayed on the screen is correct. Touching the correct stimulus is rewarded with a liquid or food reward and touching the incorrect stimulus is punished with a timeout where the mouse or rat cannot start another trial. Once the mouse or rat learns the correct stimulus, the stimuli are reversed so that the previously rewarded stimuli now results in punishment. This type of reversal learning requires the mouse or rat to inhibit automatic responses that require the prefrontal cortex. This task is a great measure of cognitive flexibility and is a great tool for examining animal models of many neuropsychiatric disorders like schizophrenia or autism.

The second is the paired associative learning task:
Paired Associate Learning (PAL) displayed on screen.

In this task, mice or rats learn and remember which of three objects goes in which of three spatial locations. On each trial, two different objects are presented; one is in the correct location; the other in the incorrect location. The rat or mouse must choose which stimulus is in the correct location. This task relies on the hippocampus and can be used to test hippocampal dysfunction commonly seen in Alzheimer’s disease.

The third task is the visuomotor conditional learning task:
Visuomotor Conditional Learning (VMCL) on screen.

This task is a stimulus-response task. The rat or mouse must learn that two stimuli go with two different locations. When the first stimulus, stimulus A, is presented the rat or mouse must always respond to location A. When the second stimulus, stimulus B, is presented, the rat or mouse must always respond to location B. This type of test is useful for examining motor dysfunction in rat and mouse models of Parkinson’s disease and Huntington’s disease.

The fourth and final task is the 5-choice serial reaction time task:
5-Choice Serial Reaction Time (5CSRT) displayed on screen.

This task requires the mouse or rat to respond to a brief visual stimulus presented randomly in one of 5 locations. The stimulus is flashed and then disappears after a set interval requiring that the mouse or rat retain the location of the stimulus in memory. The stimulus is brief, requiring the mouse or rat to pay attention to the screen at all times. This task is used to measure attention span and impulsivity control in mice and rats and is useful for animal models of ADHD and schizophrenia.